Résumé
En physique, l’annihilation ou anéantissement correspond à la collision entre une particule sous-atomique et son antiparticule respective. Puisque l’énergie et la quantité de mouvement doivent être conservées, les particules ne se muent pas en rien, mais plutôt en nouvelles particules. Les antiparticules possèdent des nombres quantiques exactement opposés à ceux des particules, donc la somme des nombres quantiques du pair égale zéro. Ainsi, le processus peut donner naissance à n’importe quel jeu de particules dont la somme des nombres quantiques est égale à zéro, pourvu que la conservation d’énergie et de la quantité de mouvement soient respectées. Lors de la collision entre une particule et son antiparticule, leur énergie se transforme en particule porteuse de force, tel le boson W+/W-, porteuse de force W/Z ou un photon. Ces particules se transforment plus tard en autres particules. Lors d’une annihilation à faible énergie, la production des photons est favorisée, puisque ces particules-ci n’ont pas de masse. Cependant les collisionneurs des particules à haute énergie causent des annihilations qui créent un éventail de particules lourdes exotiques. cadre|Un diagramme de Feynman montrant l’annihilation mutuelle d’un électron et d’un positron en deux photons. Annihilation électron-positron Lorsqu’un électron de faible énergie anéantit un positron (antiélectron), cette paire ne peut produire que trois ou quatre photons gamma, puisque l’électron et le positron ne portent pas suffisamment de masse-énergie pour produire des particules plus lourdes, et puisque la conservation d’énergie et de la quantité de mouvement ne permettent que la création d’un seul photon. Lorsqu’un électron et un positron se heurtent, s’anéantissent et génèrent des rayons gamma, de l’énergie est dégagée. Les deux particules ont une énergie au repos de 511 kiloélectron-volts (keV). L’énergie dégagée par une transformation totale de leur masse équivaut à leurs énergies au repos, dans la forme de rayons gamma, chacun ayant une énergie de .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Afficher plus