Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The exploration of alternative molecular hole-transporting materials (HTMs) specifically for high performance perovskite solar cells (PSCs) is a relatively recent research area. Aiming for further increasing the 'efficiency-cost ratio' of PSCs, we developed a spiro[fluorene-9,9'-xanthene] based HTM (X59) via two-step synthesis from commercial precursors for perovskite solar cells (PSCs) that works as effectively as the well-known HTM-Spiro-OMeTAD-based device under the same conditions. The molecular structure was analyzed by X-ray crystallography indicating a similar packing regime as for Spiro-OMeTAD. An impressive PCE of 19.8% was achieved by using X59 as HTM in PSC, which can compete with the record PCE of 20.8% by using the state-of-the-art-HTM Spiro-OMeTAD (Tress et al., 2016) [1]. The optimized devices employing X59 as HTM exhibited minimized hysteresis, excellent reproducibility and reasonable stability under dark and dry conditions. The present finding highlights the potential of spiro-type HTM for high performance PSCs and paves the way to a much deceased fabrication cost for potential commercialization of perovskite solar panels. (C) 2016 Elsevier Ltd. All rights reserved.
, , ,
Mohammad Khaja Nazeeruddin, Anurag Roy