Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Oxidation kinetics of iodide and HOI/OI- by permanganate were studied in the pH range of 5.0-10.0. Iodide oxidation and iodate formation were faster at lower pH. The apparent second-order rate constants (k(obs)) for iodide oxidation by permanganate decrease with increasing pH from 29 M-1 s(-1) at pH 5.0 and 6.9 s(-1) at pH 7.0 to 2.7 M-1 s(-1) at pH 10.0. keys for HOI abatement are 56 M-1 s(-1) at pH 5.0, 2.5 M-1 s(-1) at pH 7.0, and 173 M-1 s(-1) at pH 10.0. Iodate yields over HOI abatement decrease from 98% at pH 6.0 to 33% for pH > 9.5, demonstrating that HOI disproportionation dominates HOI transformation by permanganate at pH >= 8.0. MnO2 formed as a product from permanganate reduction, oxidizes HOI to iodate for pH < 8.0, and promotes HOI disproportionation for pH > 8.0. The rate of HOI oxidation or disproportionation induced by MnO2 is much lower than for permanganate. During treatment of iodide-containing waters, the potential for iodinated disinfection byproducts (I-DBPs) formation is highest at pH 7.0-8.0 due to the long lifetime of HOI. For pH < 6.0, HOI/I-2 is quickly oxidized by permanganate to iodate, whereas for pH > 8.0, HOI/OI- undergoes a fast permanganate-mediated disproportionation.
Hubert Girault, Astrid Johana Olaya Avendano, Jorge Gustavo Uranga, Julieta Soledad Riva, Sara Natalia Moya Betancourt