Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study the possibility of controlling the propagation of ballistic electrons using an electronic metamaterial with zero quantum index of refraction. This is obtained by tailoring the band structure of a semiconductor superlattice to exhibit a Dirac cone ...
Hyperbolic media exhibit unparalleld properties, e.g, as light absorbers in photovoltaics and photonics, as superlenses in far-field imaging, as subwavelength light concentrators in nanolithography, or as novel materials in emission engineering. With the a ...
We successfully demonstrate the plasmonic coupling between metal nanoantennas and individual GaAs nanowires (NWs). In particular, by using dark-field scattering and second harmonic excitation spectroscopy in partnership with analytical and full-vector FDTD ...
Originally demonstrated with electromagnetic waves, supercoupling describes the extraordinary matched transmission, energy squeezing, and anomalous quasistatic tunneling through narrow channels. This behavior is the result of impedance matching achieved wh ...
A plasmonic analogue of electromagnetically induced transparancy is activated and tuned in the terahertz (THz) range in asymmetric metamaterials fabricated from high critical temperature (T-c) superconductor thin films. The asymmetric design provides a nea ...
We discuss the use of metasurfaces and plasmonic metamaterials to minimize the scattering from receiving antennas and sensors, with the goal of maximizing their absorption efficiency. We first analytically study and highlight the potential of these approac ...
Institute of Electrical and Electronics Engineers2014
We investigate the effect of spatial dispersion phenomenon on the performance of graphene-based plasmonic devices at terahertz (THz). For this purpose, two different components, namely a phase shifter and a low-pass filter, are taken from the literature, i ...
The coupling between metallic nanostructures is a common and easy way to control the optical properties of plasmonic systems. Even though the coupling between plasmonic oscillators has been widely studied in the linear regime, its influence on the nonlinea ...
Double-layer plasmonic nanostructures are fabricated by depositing metal at normal incidence onto various resist masks, forming an antenna layer on top of the resist post and a hole layer on the substrate. Antenna plasmon resonances are found to couple to ...
We propose and study an integrated refractive index sensor which is based on a plasmonic slot waveguide cavity. In this device, a guided mode supported by a silicon photonic wire waveguide is vertically coupled to a metal-dielectric-metal cavity separated ...