Publication

Back-Contacted Silicon Heterojunction Solar Cells

Andrea Tomasi
2016
Thèse EPFL
Résumé

Wood/timber has been widely used for house and bridge construction. It is a widely available natural material that necessitates low energy for the production, following simple processes. The environmentally friendliness, together with the low cost of raw material makes it an efficient building material. Moreover, timber possesses attractive mechanical properties such as high specific strength and stiffness. In contrast, timber constructions have, to a large extent, been based on experience and craftsmanship, which prevents taking full advantage of this material. There are several reasons for this. Timber has a complex mechanical behavior being a natural highly anisotropic fiber composite, with properties that are also affected by moisture content. For specific species, geographical location, local growth conditions and moisture content, the material properties depend, among others, on the age, the structural imperfections, the location of timber within the tree, and load history. Consequently, the mechanical properties of timber are, inherently, highly variable. Variability of timber properties includes statistical and spatial variabilities, referred to as random spatial variability (RSV). This entails adopting a probabilistic/stochastic approach to analysis of timer structures. The aim of this research is to understand and model the effect of the RSV on the clear timber mechanical properties, as well as the experimental characterization of RSV for clear timber, and also to develop a stochastic finite element framework for random response assessment of clear timber components. A size effect model was developed which takes into account the RSV in the strength field. The theory of random fields was used for this purpose. Using the spectral representation scheme, realizations of strength field in each specimen were generated. The stochastic response was obtained via the Monte Carlo method. The model results was compared to the existing experimental data in the literature. Also, an analytical expression was provided to facilitate the application of the model. Clear timber specimens of different lengths were fabricated for longitudinal tensile tests. Local deformations along the lengths of the specimens were recorded during the tests in order to characterize the RSV in longitudinal properties. A connection between the mesostructure of the clear wood and its local elastic modulus was observed. Statistics concerning the elastic modulus, strength and strain to failure and the effect of length change on these properties were extracted. The correlations between the strength, the elasticity and the density were obtained. Transverse properties were also investigated which are of particular importance in some applications such as mechanical and adhesively-bonded timber joints. Regularly positioned and randomly positioned specimens were cut from different timber boards. Statistics and size effects concerning the elastic modulus, strength and strain to failure as well as the correlation between the properties were studied. The spatial variability in the transverse elastic modulus, the tensile strength and the failure strain was also experimentally studied. Mesostructural patterns of clear timber were shown to have a direct effect on the local elastic modulus. Finally, a stochastic finite element framework was established by combining the spectral representation scheme for RSV modelling and the finite element software ABAQUS in a non-intrusive manner. This framework can be used for the stochastic structural response assessment of timber structural components made of clear timber. To show the applicability of the model in real applications, the failure of adhesively bonded double-lap timber joints were simulated under tensile loading. The effect of size on the strength was also taken into account. The results were in a fairly well agreement with the available experimental data in the literature.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (38)
Résistance des matériaux
vignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).
Module de Young
Le module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Essai de compression
Un essai de compression mesure la résistance à la compression d'un matériau sur une machine d'essais mécaniques suivant un protocole normalisé. Les essais de compression se font souvent sur le même appareil que l'essai de traction mais en appliquant la charge en compression au lieu de l'appliquer en traction. Pendant l'essai de compression, l'échantillon se raccourcit et s'élargit. La déformation relative est « négative » en ce sens que la longueur de l'échantillon diminue.
Afficher plus
Publications associées (136)

Nanoindentation of embedded particles

Andreas Mortensen, Alejandra Inés Slagter, Joris Pierre Everaerts

We address the effect of elastic inhomogeneity on elastic modulus and hardness determinations made by depth-sensing indentations performed on individual particles embedded within a matrix of different elastic modulus. Finite element simulations and nanoind ...
SPRINGER HEIDELBERG2023

Role of Minimum Adhesive Wear Particle Size in Third-Body Layer Properties

Jean-François Molinari, Son-Jonathan Pham-Ba

We employ a novel discrete element method (DEM) force formulation to simulate adhesive wear and assess the effects of material and loading parameters on the properties of the third-body layer (TBL) formed during sliding motion. The study emphasizes the rol ...
2023

Thermophysical and thermomechanical properties of basalt-phenolic FRP rebars under high temperature

Thomas Keller, Hongwei Zhu, Ting Li, Jiahui Shen

An experimental investigation was conducted on the thermophysical and thermomechanical properties of phenolic-basalt fiber-reinforced polymer (P-BFRP) rebars subjected to high temperature. As a comparison, vinylBFRP (V-BFRP) and epoxy-BFRP (E-BFRP) rebars ...
ELSEVIER SCI LTD2022
Afficher plus
MOOCs associés (8)
L'Art des Structures I - Câbles et arcs [retired]
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'Art des Structures I - Câbles et arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Advanced Timber Plate Structural Design
A trans-disciplinary approach in structural design and digital architecture of timber structures with advanced manufacturing workflow.
Afficher plus