Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Graphe complémentaireframe|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Recalage d'imagesEn , le recalage est une technique qui consiste en la « mise en correspondance d'images », dans le but de comparer ou combiner leurs informations respectives. Cette méthode repose sur les mêmes principes physique et le même type de modélisation mathématique que la . Cette mise en correspondance se fait par la recherche d'une transformation géométrique permettant de passer d'une image à une autre.
Large deformation diffeomorphic metric mappingLarge deformation diffeomorphic metric mapping (LDDMM) is a specific suite of algorithms used for diffeomorphic mapping and manipulating dense imagery based on diffeomorphic metric mapping within the academic discipline of computational anatomy, to be distinguished from its precursor based on diffeomorphic mapping. The distinction between the two is that diffeomorphic metric maps satisfy the property that the length associated to their flow away from the identity induces a metric on the group of diffeomorphisms, which in turn induces a metric on the orbit of shapes and forms within the field of Computational Anatomy.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Mouvement à force centraleEn mécanique du point, un mouvement à force centrale est le mouvement d'un point matériel M soumis uniquement à une force centrale, c'est-à-dire une force toujours dirigée vers le même point noté O appelé centre de force. Ce type de mouvement est une modélisation de certains phénomènes physiques : il n'est pas rigoureusement présent dans la nature, mais certains mouvements s'en rapprochent. Par exemple, on peut considérer que la Terre est soumise à une force centrale de la part du Soleil.