Toward timely, predictable and cost-effective data analytics
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
When the time comes to make a critical decision, it is of paramount importance to prepare enough so that all the information necessary is available at decision time. Under-preparation leads to uninformed decisions; over-preparation, however, may lead to co ...
Advances in data acquisition technologies and supercomputing for large-scale simulations have led to an exponential growth in the volume of spatial data. This growth is accompanied by an increase in data complexity, such as spatial density, but also by mor ...
Core to many scientific and analytics applications are spatial data capturing the position or shape of objects in space, and time series recording the values of a process over time. Effective analysis of such data requires a shift from confirmatory pipelin ...
Modern applications accumulate data at an exponentially increasing rate and traditional database systems struggle to keep up.
Decision support systems used in industry, rely heavily on data analysis, and require real-time responses irrespective of data siz ...
Following decades of massive digitization, an unprecedented amount of historical document facsimiles can now be retrieved and accessed via cultural heritage online portals. If this represents a huge step forward in terms of preservation and accessibility, ...
In the past two decades, the use of ontologies has been proven to be an effective tool for enriching existing information systems in the digital data modelling domain and exploiting those assets for semantic interoperability. With the rise of Industry 4.0, ...
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption ...
Single-cell omics enables researchers to dissect biological systems at a resolution that was unthinkable just 10 years ago. However, this analytical revolution also triggered new demands in 'big data' management, forcing researchers to stay up to speed wit ...
The wide application of Internet of Things (IoT) has fostered the development of Industry 4.0. In manufacturing domain, Industrial IoT (IIoT) are key components of the Factories of the Future (FoF). The big IIoT data are the foundation of implementing data ...
Toward industry 4.0, modern manufacturing companies are aiming at building digital twins to manage physical assets, processes, people, and places. Since in this environment, massive amounts of data have been generated and collected, integration and managem ...