Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we lay the groundwork for a robust cross-device comparison of data-driven disruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on a comparative analysis, we define physics-based indicators of disruption precursors based on temperature, density, and radiation profiles that are currently not used in many other machine learning predictors for DIII-D data. These profile-based indicators are shown to well-describe impurity accumulation events in both DIII-D and JET discharges that eventually disrupt. The univariate analysis of the features used as input signals in the data-driven algorithms applied on the data of both tokamaks statistically highlights the differences in the dominant disruption precursors. JET with its ITER-like wall is more prone to impurity accumulation events, while DIII-D is more subject to edge-cooling mechanisms that destabilize dangerous magnetohydrodynamic modes. Even though the analyzed data sets are characterized by such intrinsic differences, we show through a few examples that the inclusion of physics-based disruption markers in data-driven algorithms is a promising path toward the realization of a uniform framework to predict and interpret disruptive scenarios across different tokamaks. As long as the destabilizing precursors are diagnosed in a device-independent way, the knowledge that data-driven algorithms learn on one device can be re-used to explain a disruptive behavior on another device.
Athanasios Nenes, Paraskevi Georgakaki
Anastasia Ailamaki, Viktor Sanca