Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Tailoring nanoscale light concentration and electromagnetic near-field enhancement over a broad spectral range is crucial for many photonics applications such as infrared spectroscopy, photodetection, and light harvesting. So far, broadband light enhanceme ...
The past two decades have witnessed the explosion of activities in the field of surface enhanced Raman spectroscopy (SERS). SERS platforms employ nano-structures that excite plasmonic modes with large local electromagnetic fields localized within small gap ...
Novel two-dimensional metamaterials, known as metasurfaces, have emerged as a breakthrough platform for controlling electromagnetic wave properties at the nanoscale. These metasurfaces consist of subwavelength nanoantennas or so-called meta-atoms, which ca ...
Rapid advances in image sensor technology have generated a mismatch between the small size of image sensor pixels and the achievable filter spectral resolution. This mismatch has prevented the realization of chip-based image sensors with simultaneously hig ...
Research into mesoscopic magnetic systems, which incorporate magnetic elements with dimensions ranging from a few nm up to a few 10s of micrometer, has been spurred on by the developments in their fabrication, characterisation, and control. Electron beam a ...
Intensive developments of plasmonic nanomaterials over recent decades have inspired appealing applications in biosensing, optical trapping, fluorescence enhancement and light harvesting in solar cells. These nanostructures supporting unique light-matter in ...
The last few decades have witnessed exciting advances in micro-opto-electro-mechanical systems (MOEMS) including revolutionary development of fabrication processes and an ever increasing expansion of their domain of applications. In parallel, femtosecond l ...
The most prevalent materials used in the field of plasmonics are Au and Ag. However, for the past few years, the plasmonic community has also been looking for alternative materials that have lower losses than Au and higher stability than Ag. This thesis is ...
The resonant excitation of free electrons in metallic nanostructures enables extreme near field intensities along with a deep sub-wavelength localization of the electromagnetic energy. This has been exploited to enhance light-matter interaction down to the ...
Recently, it was noted that losses in plasmonics can also enable several useful optical functionalities. One class of structures that can maximize absorption are metal insulator metal systems. Here, we study 3-layer systems with a nano-composite metal laye ...