Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The past two decades have witnessed the explosion of activities in the field of surface enhanced Raman spectroscopy (SERS). SERS platforms employ nano-structures that excite plasmonic modes with large local electromagnetic fields localized within small gap spaces between each constituting feature. Although the research-oriented SERS platforms yield significant signal enhancements to identify even single molecules, practical SERS-based sensors have not been fully introduced yet. The main reason behind this absence is the need for a cost-effective and reliable manufacturing method for controllable fabrication of plasmonic nano-gaps over large areas. In this article, we introduced a novel manufacturing process that enables fast and scalable fabrication of highly uniform sub-10-nm gaps that could yield large SERS signals. In this process, a conventional electroplating technique is used to produce unique nano-mushroom antenna arrays on a conducting substrate, resulting in controllable gap spaces between mushroom heads. By understanding the nature of mushroom shape antenna formation, we demonstrated the control of inter-metallic gaps down to 5 nm. We showed that the manufactured nano-structures yield Raman enhancements more than 10(8). Providing such large SERS signals that are uniform over large areas, our cost-effective fabrication technique could be very critical to realize practical SERS devices.
Ardemis Anoush Boghossian, Giulia Tagliabue, Sayyed Hashem Sajjadi, Alessandra Antonucci, Shang-Jung Wu, Theodoros Tsoulos, Amirmostafa Amirjani