Constante d'aciditévignette|350px|L'acide acétique, un acide faible, donne un proton (ion hydrogène, ici surcoloré en vert) à l'eau dans une réaction d'équilibre donnant l'ion acétate et l'ion hydronium (code couleur : rouge=oxygène, noir=carbone, blanc=hydrogène). En chimie, une constante d'acidité ou constante de dissociation acide, Ka, est une mesure quantitative de la force d'un acide en solution. C'est la constante d'équilibre de la réaction de dissociation d'une espèce acide dans le cadre des réactions acido-basiques.
Table of thermodynamic equationsCommon thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows: List of thermodynamic propertiesThermodynamic potentialFree entropy and Defining equation (physical chemistry) Many of the definitions below are also used in the thermodynamics of chemical reactions. Heat capacity and Thermal expansion Thermal conductivity The equations in this article are classified by subject. where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
Produit de solubilitéLe produit de solubilité est la constante d'équilibre correspondant à la dissolution d'un solide dans un solvant. On considère la dissolution d'un solide ionique de formule XY. La dissolution est décrite par la réaction suivante : En utilisant la loi d'action de masse, on obtient la formule : avec a(X) l'activité de l'espèce X. Le composé ionique étant un solide pur, son activité est égale à 1. Les activités des ions dans un milieu aqueux correspondent à leurs concentrations exprimées en moles par litre (), divisées par une concentration de référence C = 1 .
On the Equilibrium of Heterogeneous SubstancesIn the history of thermodynamics, On the Equilibrium of Heterogeneous Substances is a 300-page paper written by American chemical physicist Willard Gibbs. It is one of the founding papers in thermodynamics, along with German physicist Hermann von Helmholtz's 1882 paper "Thermodynamik chemischer Vorgänge." Together they form the foundation of chemical thermodynamics as well as a large part of physical chemistry. Gibbs's Equilibrium marked the beginning of chemical thermodynamics by integrating chemical, physical, electrical, and electromagnetic phenomena into a coherent system.
Enthalpy of atomizationIn chemistry, the enthalpy of atomization (also atomisation in British English) is the enthalpy change that accompanies the total separation of all atoms in a chemical substance (either an element or a compound). This is often represented by the symbol \Delta_{at}H or \Delta H_{at}. All bonds in the compound are broken in atomization and none are formed, so enthalpies of atomization are always positive. The associated standard enthalpy is known as the standard enthalpy of atomization, Δ_atH^⊖/(kJ mol−1), at 298.
Loi de HenryEn physique, et plus particulièrement en thermodynamique, la loi de Henry, établie empiriquement par le physicien britannique William Henry en 1803, énonce que : À température constante et à saturation, la pression partielle dans la phase vapeur d'un soluté volatil est proportionnelle à la fraction molaire de ce corps dans la solution liquide. En pratique, elle ne s'applique qu'aux faibles concentrations du soluté (fraction molaire inférieure à ) et à des pressions de moins de (domaine d'application de la loi des gaz parfaits).
Énergie de vaporisationIn thermodynamics, the enthalpy of vaporization (symbol ∆Hvap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure at which the transformation (vaporization or evaporation) takes place. The enthalpy of vaporization is often quoted for the normal boiling temperature of the substance.
Densité massique d'énergieEn physique, la densité massique d'énergie désigne le quotient d'une énergie E par la masse m de matière dans laquelle cette énergie est déposée ou stockée : Pour le stockage d'énergie, quand il s'agit d'une propriété intrinsèque du matériau (ou du dispositif) considéré, on l'appelle énergie spécifique. L'unité dérivée de référence pour exprimer la densité massique d'énergie dans le Système international est le joule par kilogramme (J/kg).