Publication

Stochastic fault detection in a plug-and-play scenario

Giancarlo Ferrari Trecate
2015
Article de conférence
Résumé

This paper proposes a novel stochastic Fault Detection (FD) approach for the monitoring of Large-Scale Systems (LSSs) in a Plug-and-Play (PnP) dynamic scenario. The proposed architecture considers stochastic bounds on the measurement noises and modeling uncertainties, providing stochastic time-varying FD thresholds with guaranteed false alarms probability levels. The monitored LSS consists of several interconnected subsystems and the designed FD architecture is able to manage plugging-in of novel subsystems and un-plugging of existing ones. Moreover, the proposed PnP approach performs the unplugging of faulty subsystems in order to avoid the propagation of faults in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. The reconfiguration processes involve only local operations of neighboring subsystems, thus allowing a distributed architecture. A consensus approach is used for the estimation of variables shared among more than one subsystem; a method is proposed to define the time-varying consensus weights in order to allow PnP operations and to minimize at each step the variance of the uncertainty of the FD thresholds. Simulation results on a Power Network System application show the effectiveness of the proposed approach.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.