Publication

NARX Models: Optimal Parametric Approximation of Nonparametric Estimators

Giancarlo Ferrari Trecate
2001
Article de conférence
Résumé

Bayesian regression, a nonparametric identification technique with several appealing features, can be applied to the identification of NARX (nonlinear ARX) models. However, its computational complexity scales as O(N3)O(N^3) where NN is the data set size. In order to reduce complexity, the challenge is to obtain fixed-order parametric models capable of approximating accurately the nonparametric Bayes estimate avoiding its explicit computation. In this work we derive, optimal finite-dimensional approximations of complexity O(N2)O(N^2) focusing on their use in the parametric identification of NARX models.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.