Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
Analytic manifoldIn mathematics, an analytic manifold, also known as a manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For , the space of analytic functions, , consists of infinitely differentiable functions , such that the Taylor series converges to in a neighborhood of , for all .
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Elliptic boundary value problemIn mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on. Differential equations describe a large class of natural phenomena, from the heat equation describing the evolution of heat in (for instance) a metal plate, to the Navier-Stokes equation describing the movement of fluids, including Einstein's equations describing the physical universe in a relativistic way.
Variété de SteinEn mathématiques, et plus précisément en théorie des variétés complexes en plusieurs variables, une variété de Stein est une sous-variété complexe de l'espace vectoriel de dimension complexe n. Ils ont été présentés par et nommés d'après Karl Stein. Un espace de Stein est similaire à une variété de Stein mais est autorisé à avoir des singularités. Les espaces de Stein sont les analogues des variétés affines ou des schémas affines en géométrie algébrique.