Résumé
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime geometry around the star onto three-dimensional (3-D) space. The full geodesic equation is where s is a scalar parameter of motion (e.g. the proper time), and are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) symmetric in the two lower indices. Greek indices may take the values: 0, 1, 2, 3 and the summation convention is used for repeated indices and . The quantity on the left-hand-side of this equation is the acceleration of a particle, so this equation is analogous to Newton's laws of motion, which likewise provide formulae for the acceleration of a particle. The Christoffel symbols are functions of the four spacetime coordinates and so are independent of the velocity or acceleration or other characteristics of a test particle whose motion is described by the geodesic equation. So far the geodesic equation of motion has been written in terms of a scalar parameter s. It can alternatively be written in terms of the time coordinate, (here we have used the triple bar to signify a definition). The geodesic equation of motion then becomes: This formulation of the geodesic equation of motion can be useful for computer calculations and to compare General Relativity with Newtonian Gravity. It is straightforward to derive this form of the geodesic equation of motion from the form which uses proper time as a parameter using the chain rule.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.