Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The 'red-green' pathway of the retina is classically recognized as one of the retinal mechanisms allowing humans to gather color information from light, by combining information from L-cones and M-cones in an opponent way. The precise retinal circuitry that allows the opponency process to occur is still uncertain, but it is known that signals from L-cones and M-cones, having a widely overlapping spectral response, contribute with opposite signs. In this paper, we simulate the red-green opponency process using a retina model based on linear-nonlinear analysis to characterize context adaptation and exploiting an image-processing approach to simulate the neural responses in order to track a moving target. Moreover, we integrate this model within a visual pursuit controller implemented as a spiking neural network to guide eye movements in a humanoid robot. Tests conducted in the Neurorobotics Platform confirm the effectiveness of the whole model. This work is the first step towards a bio-inspired smooth pursuit model embedding a retina model using spiking neural networks.
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi