Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.
Kernel principal component analysisIn the field of multivariate statistics, kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space. Recall that conventional PCA operates on zero-centered data; that is, where is one of the multivariate observations.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Brain simulationBrain simulation is the concept of creating a functioning computer model of a brain or part of a brain. Brain simulation projects intend to contribute to a complete understanding of the brain, and eventually also assist the process of treating and diagnosing brain diseases. Various simulations from around the world have been fully or partially released as open source software, such as C. elegans, and the Blue Brain Project Showcase.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Imagerie par résonance magnétique fonctionnellethumb|Détection par l'IRMf de l'activation des régions du cerveau impliquées dans la perception visuelle. L’imagerie par résonance magnétique fonctionnelle (IRMf) est une application de l' permettant de visualiser, de manière indirecte, l'activité cérébrale. Il s'agit d'une technique d'imagerie utilisée pour l'étude du fonctionnement du cerveau. Elle consiste à enregistrer des variations hémodynamiques (variation des propriétés du flux sanguin) cérébrales locales minimes, lorsque ces zones sont stimulées.
Brain connectivity estimatorsBrain connectivity estimators represent patterns of links in the brain. Connectivity can be considered at different levels of the brain's organisation: from neurons, to neural assemblies and brain structures. Brain connectivity involves different concepts such as: neuroanatomical or structural connectivity (pattern of anatomical links), functional connectivity (usually understood as statistical dependencies) and effective connectivity (referring to causal interactions).
Blue BrainLe projet Blue Brain (littéralement « cerveau bleu ») a pour objectif de créer un cerveau synthétique par processus de rétroingénierie. Fondé en mai 2005 à l'École polytechnique fédérale de Lausanne (EPFL) en Suisse, ce projet étudie l'architecture et les principes fonctionnels du cerveau. Il a été étendu, en 2013, au Human Brain Project (HBP), également dirigé par Henry Markram, mais financé principalement par l'UE. Le projet Blue Brain semble être au fondement d'un projet plus vaste, qui consiste à étudier le cerveau par des simulations de grande échelle (« Simulation Neuroscience »).
Imagerie cérébraleLimagerie cérébrale (dite aussi neuro-imagerie) désigne l'ensemble des techniques issues de l' qui permettent d'observer le cerveau, en particulier lorsqu'un individu exécute une tâche cognitive. L'observation du cerveau par autopsie est imprécise et incomplète en ce qu'elle se limite à l'analyse d'un état figé qui ne peut rendre compte d'effets liés aux évolutions dans l'organe vivant. Le premier effort connu de neuro-imagerie visant à dépasser cette limite a été la « balance de circulation humaine » de Angelo Mosso développée dans les années 1880.
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.