Knowledge marketA knowledge market is a mechanism for distributing knowledge resources. There are two views on knowledge and how knowledge markets can function. One view uses a legal construct of intellectual property to make knowledge a typical scarce resource, so the traditional commodity market mechanism can be applied directly to distribute it. An alternative model is based on treating knowledge as a public good and hence encouraging free sharing of knowledge. This is often referred to as attention economy.
Definitions of knowledgeDefinitions of knowledge try to determine the essential features of knowledge. Closely related terms are conception of knowledge, theory of knowledge, and analysis of knowledge. Some general features of knowledge are widely accepted among philosophers, for example, that it constitutes a cognitive success or an epistemic contact with reality and that propositional knowledge involves true belief. Most definitions of knowledge in analytic philosophy focus on propositional knowledge or knowledge-that, as in knowing that Dave is at home, in contrast to knowledge-how (know-how) expressing practical competence.
Procedural knowledgeProcedural knowledge (also known as knowing-how, and sometimes referred to as practical knowledge, imperative knowledge, or performative knowledge) is the knowledge exercised in the performance of some task. Unlike descriptive knowledge (also known as declarative knowledge, propositional knowledge or "knowing-that"), which involves knowledge of specific facts or propositions (e.g. "I know that snow is white"), procedural knowledge involves one's ability to do something (e.g. "I know how to change a flat tire").
Proof calculusIn mathematical logic, a proof calculus or a proof system is built to prove statements. A proof system includes the components: Language: The set L of formulas admitted by the system, for example, propositional logic or first-order logic. Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. Axioms: Formulas in L assumed to be valid. All theorems are derived from axioms. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics.
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
SchemeScheme (prononciation : ) est un langage de programmation dérivé du langage fonctionnel Lisp, créé dans les années 1970 au Massachusetts Institute of Technology (MIT) par Gerald Jay Sussman et Guy L. Steele. Le but des créateurs du langage était d'épurer le Lisp en conservant les aspects essentiels, la flexibilité et la puissance expressive. Scheme a donc une syntaxe extrêmement simple, avec un nombre très limité de mots-clés. Comme en Lisp, la notation préfixée permet de s'affranchir d'une précédence des opérateurs.
Chicken (Scheme implementation)Chicken (stylized as CHICKEN) is a programming language, specifically a compiler and interpreter which implement a dialect of the programming language Scheme, and which compiles Scheme source code to standard C. It is mostly R5RS compliant and offers many extensions to the standard. The newer R7RS standard is supported through an extension library. Chicken is free and open-source software available under a BSD license. It is implemented mostly in Scheme, with some parts in C for performance or to make embedding into C programs easier.
Théorème isopérimétriqueEn mathématiques, et plus précisément en géométrie, un théorème isopérimétrique est une généralisation des résultats plus élémentaires d'isopérimétrie montrant par exemple que le disque est, à périmètre donné, la figure ayant la plus grande aire. Les questions traitées par cette généralisation concernent les compacts d'un espace métrique muni d'une mesure. Un exemple simple est donné par les compacts d'un plan euclidien. Les compacts concernés sont ceux de mesures finies ayant une frontière aussi de mesure finie.
Pu's inequalityIn differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface homeomorphic to the real projective plane satisfies the inequality where is the systole of . The equality is attained precisely when the metric has constant Gaussian curvature.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.