Publication

The growth and optical properties of III-V nanostructures grown by Molecular Beam Epitaxy

Gözde Tütüncüoglu
2017
Thèse EPFL
Résumé

This thesis is dedicated to the growth and characterization of the optoelectronic properties of III-V semiconductor nanostructures namely nanowires and nanoscale membranes. III-V semiconductors possess promising intrinsic properties like direct band gap, high electron/- hole mobility and spin-orbit interaction which makes them interesting for a wide range of applications such as high speed electronics, optoelectronics and photovoltaics. Nanostruc- tures enable the exploitation and further functionalization of the inherent semiconductor properties. The nanostructures we study in the scope of this thesis are grown with molecular beam epitaxy which enables us to obtain ultra-pure nanostructures with high crystalline quality. In the first part of this thesis we investigate and optimize the growth of GaAs nanowires both on silicon and GaAs substrates. We employ the self-catalyzed growth technique in order to avoid the risk of foreign metal contamination. Growth on Si substrates is interesting in views of enabling the integration of existing Si microtechnology and III-V technology. GaAs nanowire growth on (111) Si substrates is achieved with self-assisted and position controlled nanowire growth techniques. In both techniques, the effects of the silicon oxide thickness and composition along with the nature of the openings are investigated. GaAs nanowires grown on (111)B GaAs substrates are employed in optomechanical and optoelectronics applications. Pristine GaAs nanowires grown on (111)B GaAs substrates are employed in scanning force microscopy thanks to asymmetric orthogonal modes they exhibit. Furthermore, GaAs/AlGaAs heterostructure nanowires demonstrate lasing when their dimensions and AlGaAs capping are optimized. The rest of this thesis is dedicated to the growth of defect-free structures. Two methods are presented to create defect-free pure zinc-blende GaAs nanostructures. The first one is to modify the polarity of GaAs nanowires. We optimize the growth parameters to obtain a high yield of (111)A nanowires on (100) GaAs. GaAs nanowires grown in (111)A direction exhibited a defect-free structure in contrast to the nanowires grown in (111)B direction. Our second approach is to grow elongated nanostructures and control their orientation to ‘lock out’ the defects. When these nanostructures, GaAs nanoscale membranes, are oriented in direction on a (111)B GaAs substrate they exhibit pure zinc-blende crystalline structure. Their superior crystalline quality is confirmed with transmission electron microscopy and optical characterization techniques, i.e. photoluminescence and cathodoluminescence. Their growth mechanism and parameter window is investigated in detail. Next, GaAs nanoscale membranes are used as templates for quantum heterostructures. GaAs quantum wells are embedded in an AlGaAs shell around the nanoscale membranes. They are found to exhibit bright luminescence with narrow linewidth. Additionally, local alloy fluctuations in the AlGaAs shell are investigated. They exhibited sharp and localized luminescence characteristics like self-assembled quantum dots.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (31)
Épitaxie par jet moléculaire
L'épitaxie par jets moléculaires (ou MBE pour Molecular Beam Epitaxy) est une technique consistant à envoyer un ou plusieurs jets moléculaires vers un substrat préalablement choisi pour réaliser une croissance épitaxiale. Elle permet de faire croître des échantillons nanostructurés de plusieurs à une vitesse d'environ une monocouche atomique par seconde.
Boîte quantique
Une boîte quantique ou point quantique, aussi connu sous son appellation anglophone de quantum dot, est une nanostructure de semi-conducteurs. De par sa taille et ses caractéristiques, elle se comporte comme un puits de potentiel qui confine les électrons (et les trous) dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons (longueur d'onde de De Broglie), soit quelques dizaines de nanomètres dans un semi-conducteur.
Nanofil
Un nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Afficher plus
Publications associées (323)

III-N blue-emitting epi-structures with high densities of dislocations: Fundamental mechanisms for efficiency improvement and applications

Pierre Christophe Lottigier

Since the dawn of humanity, human beings seeked to light their surroundings for their well-being, security and development. The efficiency of ancient lighting devices, e.g. oil lamps or candles, was in the order of 0.03-0.04% and jumped to 0.4-0.6% with th ...
EPFL2024

Growth and Doping Mechanisms of III-V Nanostructures by Selective Area Epitaxy

Didem Dede

Selective area epitaxy (SAE), applied to semiconductor growth, allows tailored fabrication of intricate structures at the nanoscale with enhanced properties and functionalities. In the field of nanowires (NWs), it adds scalability by enabling the fabricati ...
EPFL2024

Tailoring p-Type Behavior in ZnO Quantum Dots through Enhanced Sol–Gel Synthesis: Mechanistic Insights into Zinc Vacancies

Jacques-Edouard Moser, Andrea Cannizzo, Etienne Christophe Socie, Camila Bacellar Cases Da Silveira, Victoria Kabanova

The synthesis and control of properties of p-type ZnO is crucial for a variety of optoelectronic and spintronic applications; however, it remains challenging due to the control of intrinsic midgap (defect) states. In this study, we demonstrate a synthetic ...
2024
Afficher plus
MOOCs associés (13)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus