Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Fonction sous-modulaireEn optimisation combinatoire, les fonctions sous-modulaires sont des fonctions d'ensemble particulières. Soient E un ensemble et f une fonction qui à tout sous-ensemble X de E associe un réel f(X), on dit que f est sous-modulaire si l'inégalité suivante est vérifiée pour tout sous-ensemble X et Y de E Les fonctions sous-modulaire peuvent être vues comme l'analogue discret des fonctions convexes.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
MatroïdeEn mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.
Matroid oracleIn mathematics and computer science, a matroid oracle is a subroutine through which an algorithm may access a matroid, an abstract combinatorial structure that can be used to describe the linear dependencies between vectors in a vector space or the spanning trees of a graph, among other applications. The most commonly used oracle of this type is an independence oracle, a subroutine for testing whether a set of matroid elements is independent.
E (nombre)vignette|redresse|L’aire sous l’hyperbole est égale à 1 sur l’intervalle [1, e]. Le nombre e est la base des logarithmes naturels, c'est-à-dire le nombre défini par ln(e) = 1. Cette constante mathématique, également appelée nombre d'Euler ou constante de Néper en référence aux mathématiciens Leonhard Euler et John Napier, vaut environ 2,71828. Ce nombre est défini à la fin du , dans une correspondance entre Leibniz et Christian Huygens, comme étant la base du logarithme naturel.
Mathematical constantA mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).
Hardness of approximationIn computer science, hardness of approximation is a field that studies the algorithmic complexity of finding near-optimal solutions to optimization problems. Hardness of approximation complements the study of approximation algorithms by proving, for certain problems, a limit on the factors with which their solution can be efficiently approximated. Typically such limits show a factor of approximation beyond which a problem becomes NP-hard, implying that finding a polynomial time approximation for the problem is impossible unless NP=P.
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
Approximation-preserving reductionIn computability theory and computational complexity theory, especially the study of approximation algorithms, an approximation-preserving reduction is an algorithm for transforming one optimization problem into another problem, such that the distance of solutions from optimal is preserved to some degree. Approximation-preserving reductions are a subset of more general reductions in complexity theory; the difference is that approximation-preserving reductions usually make statements on approximation problems or optimization problems, as opposed to decision problems.