Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Alterations in hepatic free fatty acid (FFA) uptake and metabolism contribute to the development of prevalent liver disorders such as hepatosteatosis. However, detecting dynamic changes in FFA uptake by the liver in live model organisms has proven difficult. To enable noninvasive real-time imaging of FFA flux in the liver, we generated transgenic mice with liver-specific expression of luciferase and performed bioluminescence imaging with an FFA probe. Our approach enabled us to observe the changes in FFA hepatic uptake under different physiological conditions in live animals. By using this method, we detected a decrease in FFA accumulation in the liver after mice were given injections of deoxycholic acid and an increase after they were fed fenofibrate. In addition, we observed diurnal regulation of FFA hepatic uptake in living mice. Our imaging system appears to be a useful and reliable tool for studying the dynamic changes in hepatic FFA flux in models of liver disease.
Kristina Schoonjans, Petar Petrov
Kristina Schoonjans, Alessia Perino, Hadrien Charles Edouard Demagny