Applications of Strong Convex Relaxations to Allocation Problems
Publications associées (101)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This manuscript extends the relaxation theory from nonlinear elasticity to electromagnetism and to actions defined on paths of differential forms. The introduction of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopadhyay et al ...
Dense conditional random fields (CRFs) have become a popular framework for modeling several problems in computer vision such as stereo correspondence and multiclass semantic segmentation. By modeling long-range interactions, dense CRFs provide a labeling t ...
We give a constant-factor approximation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjectured constant integrality gap of th ...
We address the problem of minimizing a convex smooth function f(x) over a compact polyhedral set D given a stochastic zeroth-order constraint feedback model. This problem arises in safety-critical machine learning applications, such as personalized medicin ...
We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs ...
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear ...
Clustering is a classic topic in combinatorial optimization and plays a central role in many areas, including data science and machine learning. In this thesis, we first focus on the dynamic facility location problem (i.e., the facility location problem in ...
It is commonly assumed in the optimal auction design literature that valuations of buyers are independently drawn from a unique distribution. In this paper we study auctions under ambiguity, that is, in an environment where valuation distribution is uncert ...
The support of a vector is the number of nonzero components. We show that given an integral mxn matrix A, the integer linear optimization problem max {c(T) x : Ax = b, x >= 0, x is an element of Z(n)} has an optimal solution whose support is bounded by 2m ...