Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider one-dimensional bedforms (e.g., anti-dunes, dunes, ripples), and investigate their stability and stochastic dynamics by combining numerical stochastic simulations and linear stability analysis. We focus on anti-dune development in supercritical flows on sloping gravel beds. We also discuss how theory can be extended to ripples and dunes in subcritical flows on sand beds. We developed a model consisting of the classic Saint-Venant-Exner (SVE) equations and a stochastic advection-diffusion equation for particle activity (the solid volume of particles in motion per unit streambed area). The model is solved numerically using a weighted essentially nonoscillatory finitevolume method. It is applied to two case studies: (i) particle activity fluctuation over fixed plane beds with exact analytical solutions and (ii) the nonlinear simulation of the ensemble-averaged SVE for uniform background flow. Simulations are in excellent agreement with theoretical solutions. Also, they successfully capture the antidune regime and wavelength observed experimentally. A third set of simulations shows that the stochastic approach performs better than deterministic ones (referred to as non-equilibrium sediment transport equations in the hydraulic literature) at capturing not only the average sediment transport rate, but also its standard deviation and higher-order moments. Finally, a benchmark analysis of different bedload transport models provides evidence that those including particle diffusion perform better than classic models.
Jan Skaloud, Davide Antonio Cucci, Kenneth Joseph Paul