Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
thumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d’après l’appellation standard deviation en anglais. Il est homogène à la variable mesurée. Les écarts types sont rencontrés dans tous les domaines où sont appliquées les probabilités et la statistique, en particulier dans le domaine des sondages, en physique, en biologie ou dans la finance. Ils permettent en général de synthétiser les résultats numériques d'une expérience répétée. Tant en probabilités qu'en statistique, il sert à l'expression d'autres notions importantes comme le coefficient de corrélation, le coefficient de variation ou la répartition optimale de Neyman. Quand l'écart type d'une population est inconnu, sa valeur est approchée à l'aide d'estimateurs. Population de personnes de même taille On considère une population de 4 personnes mesurant . La moyenne des tailles est de . Chaque valeur étant égale à la moyenne, l'écart type est de . Population de personnes de tailles différentes On considère maintenant une population de 4 personnes de taille , , et . La moyenne est aussi de . Les écarts par rapport à la moyenne sont maintenant de , , et , respectivement. Ainsi l'écart type est la moyenne quadratique de ces écarts, c'est-à-dire , qui vaut environ . L'écart type est une grandeur dont l'invention remonte au , qui voit la statistique se développer au Royaume-Uni. C'est à Abraham de Moivre qu'est attribuée la découverte du concept de mesure de la dispersion qui apparaît dans son ouvrage The Doctrine of Chances en 1718.
Nicolas Lawrence Etienne Longeard
Athanasios Nenes, Romanos Foskinis, Kunfeng Gao
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal