What to Choose Next? A Paradigm for Testing Human Sequential Decision Making
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
For decades, neuroscientists and psychologists have observed that animal performance on spatial navigation tasks suggests an internal learned map of the environment. More recently, map-based (or model-based) reinforcement learning has become a highly activ ...
In many daily tasks, we make multiple decisions before reaching a goal. In order to learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary. Reinforcement learning (RL) theory suggests two classes of algorithms s ...
When humans or animals perform an action that led to a desired outcome, they show a tendency to repeat it. The mechanisms underlying learning from past experience and adapting future behavior are still not fully understood. In this thesis, I study how huma ...
Reinforcement learning is a type of supervised learning, where reward is sparse and delayed. For example in chess, a series of moves is made until a sparse reward (win, loss) is issued, which makes it impossible to evaluate the value of a single move. Stil ...
In reinforcement learning, an agent makes sequential decisions to maximize reward. During learning, the actual and expected outcome are compared to tell whether a decision was good or bad. The difference between the actual outcome and expected outcome is t ...
This report presents key interdisciplinary insights from IRGC’s expert workshop on the governance of decision-making algorithms, with particular focus on automated decisions based on learning algorithms (DMLAs). It highlights, among others, the need to imp ...
EPFL IRGC2018
, , , , ,
Whether we prepare a coffee or navigate to a shop: in many tasks we make multiple decisions before reaching a goal. Learning such state-action sequences from sparse reward raises the problem of credit-assignment: which actions out of a long sequence should ...
arXiv2017
When making a choice with limited information, we explore new features through trial-and-error to learn how they are related. However, few studies have investigated exploratory behaviour when information is limited. In this study, we address, at both the b ...
Springer Nature2017
Online Multi-Object Tracking (MOT) has wide applications in time-critical video analysis scenarios, such as robot navigation and autonomous driving. In tracking-by-detection, a major challenge of online MOT is how to robustly associate noisy object detecti ...