What to Choose Next? A Paradigm for Testing Human Sequential Decision Making
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In the Bayesian approach to sequential decision making, exact calculation of the (subjective) utility is intractable. This extends to most special cases of interest, such as reinforcement learning problems. While utility bounds are known to exist for this ...
Humans can learn under a wide variety of feedback conditions. Reinforcement learning (RL), where a series of rewarded decisions must be made, is a particularly important type of learning. Computational and behavioral studies of RL have focused mainly on Ma ...
An epidemic spreading in a network calls for a decision on the part of the network members: They should decide whether to protect themselves or not. Their decision depends on the trade off between their perceived risk of being infected and the cost of bein ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
Reinforcement learning algorithms have been successfully applied in robotics to learn how to solve tasks based on reward signals obtained during task execution. These reward signals are usually modeled by the programmer or provided by supervision. However, ...
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...
Reinforcement learning in neural networks requires a mechanism for exploring new network states in response to a single, nonspecific reward signal. Existing models have introduced synaptic or neuronal noise to drive this exploration. However, those types o ...
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
The purpose of this master project was to explore decision making process applied to a blackjack game and make the links with facets of impulsivity. The first part of this study goes through the mathematical of this game and presented the optimal policy, c ...
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
We introduce a class of learning problems where the agent is presented with a series of tasks. Intuitively, if there is a relation among those tasks, then the information gained during execution of one task has value for the execution of another task. Cons ...