Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
As neuronal simulations approach larger scales with increasing levels of detail, the neurosimulator software represents only a part of a chain of tools ranging from setup, simulation, interaction with virtual environments to analysis and visualizations. Pr ...
Computational neuroscience is a branch of the neurosciences that attempts to elucidate the principles underlying the operation of neurons with the help of mathematical modeling. In contrast with a number of fields pursuing a tightly related goal, such as m ...
In computational neuroscience, it is of crucial importance to dispose of a model that is able to accurately describe the single-neuron activity. This model should be at the same time biologically relevant and computationally fast. Many different phenomenol ...
The complexity of processes occurring in the brain is an intriguing issue not just for scientists and medical doctors, but the humanity in general. The cortex ability to perceive and analyze an enormous amount of information in an instance of time, the par ...
Generalized Linear Models (GLMs) are an increasingly popular framework for modeling neural spike trains. They have been linked to the theory of stochastic point processes and researchers have used this relation to assess goodness-of-fit using methods from ...
Micro-electrode array (MEA) technology has been exploited as a powerful tool for providing distributed information on learning, memory and information processing in cultured neuronal tissue, enabling an experimental perspective from the single cell level u ...
Predicting activity of single neuron is an important part of the computational neuroscience and a great challenge. Several mathematical models exist, from the simple (one compartment and few parameters, like the SRM or the IF-type models), to the more comp ...
Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli ...
The coordinated, collective spiking activity of neuronal populations encodes and processes information. One approach towards understanding such population based computation is to fit statistical models to simultaneously recorded spike trains and use these ...
The ability of simple mathematical models to predict the activity of single neurons is important for computational neuroscience. In neurons, stimulated by a time-dependent current or conductance, we want to predict precisely the timing of spikes and the su ...