Publication

An improvement on the number of simplices in F-q(d)

Van Thang Pham
2017
Article
Résumé

Let epsilon be a set of points in F-q(d). Bennett et al. (2016) proved that if \epsilon\ >> [GRAHICS] then epsilon determines a positive proportion of all k-simplices. In this paper, we give an improvement of this result in the case when epsilon is the Cartesian product of sets. Namely, we show that if kd epsilon is the Cartesian product of sets and [GRAHICS] = o(\epsilon), the number of congruence classes of k-simplices determined by epsilon is at least (1 - omicron(1)) [GRAPHICS] , and in some cases our result is sharp. (C) 2017 Elsevier B.V. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.