La théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite.
Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue.
Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Les sous-ensembles flous sont utilisés soit pour modéliser l'incertitude et l'imprécision, soit pour représenter des informations précises sous forme lexicale assimilable par un système expert.
En théorie des ensembles classique, une partie d'un ensemble est usuellement associée à sa fonction caractéristique. Celle-ci s'applique sur les éléments x de . Elle prend la valeur 0 si x n'appartient pas à et 1 si x appartient à .
On souhaite définir une partie floue de en attribuant aux éléments x de un degré d'appartenance, d'autant plus élevé qu'on souhaite exprimer avec certitude le fait que x est élément de . Cette valeur vaudra 0 si on souhaite exprimer que x de façon certaine n'est pas élément de , elle vaudra 1 si on souhaite exprimer que x appartient à de façon certaine, et elle prendra une valeur comprise entre 0 et 1 suivant qu'on estime plus ou moins certain l'appartenance de x à . On est donc amené à définir une partie floue de la façon suivante : une partie floue (ou sous-ensemble flou) d'un ensemble est une application de dans [0,1].
Plus généralement, si est un treillis complet, distributif et complémenté, on définit une partie L-floue comme étant une application de dans . Si , on retrouve la définition précédente de partie floue, et si , on retrouve la notion usuelle de partie de E.
Une partie floue de est caractérisée par une application de dans . Cette application, appelée fonction d'appartenance et notée représente le degré de validité de la proposition « appartient à » pour chacun des éléments de .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Théorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
La logique floue (fuzzy logic, en anglais) est une logique polyvalente où les valeurs de vérité des variables — au lieu d'être vrai ou faux — sont des réels entre 0 et 1. En ce sens, elle étend la logique booléenne classique avec des . Elle consiste à tenir compte de divers facteurs numériques pour qu'on souhaite acceptable.
La théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Explore des exemples d'algèbres homotopiques et des adjonctions, en se concentrant sur les articulations gauche et droite dans les functeurs de groupe et les coproduits.
Virtual marketplaces on the Web provide people with great facilities to buy and sell goods similar to conventional markets. In traditional business, reputation is subjectively built for known persons