Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dominate. A potential path beyond this scaling limit is to introduce domain-decomposition in time, with one such popular approach being the Parareal algorithm which has received a lot of attention due to its generality and potential scalability. Low efficiency, particularly on convection dominated problems, has however limited the adoption of the method. In this paper we introduce a new strategy, Communication Aware Adaptive Parareal (CAAP) to overcome some of the challenges. With CAAP, we choose time-subdomains short enough that convergence of the Parareal algorithm is quick, yet long enough that the overheard of communicating time-subdomain interfaces does not induce a new limit to parallel speed-up. Furthermore, we propose an adaptive work scheduling algorithm that overlaps consecutive Parareal cycles and decouples the number of time-subdomains and number of active node-groups in an efficient manner to allow for comparatively high parallel eciency. We demonstrate the viability of CAAP trough the parallel-in-time integration of a hyperbolic system of PDEs in the form of the two-dimensional nonlinear shallow-water wave equation solved using a 3rd order accurate WENO-RK discretization. For the computational cheap approximate operator needed as a preconditioner in the Parareal corrections we use a lower order Roe type discretization. Time-parallel integration of purely hyperbolic type evolution problems is traditionally considered impractical. Trough large-scale numerical experiments we demonstrate that with CAAP, it is possible not only to obtain time-parallel speedup on this class of evolution problems, but also that we may obtain parallel acceleration beyond what is possible using conventional spatial domain-decomposition techniques alone. The approach is widely applicable for parallel-in-time integration over long time domains, regardless of the class of evolution problem.
, , , ,