Science des réseauxvignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Modèle OSILe modèle OSI (de l'anglais Open Systems Interconnection) est une norme de communication, en réseau, de tous les systèmes informatiques. C'est un modèle de communications entre ordinateurs proposé par l'ISO (Organisation internationale de normalisation) qui décrit les fonctionnalités nécessaires à la communication et l'organisation de ces fonctions.
Réseau sans filUn réseau sans fil est un réseau informatique numérique qui connecte différents postes ou systèmes entre eux par ondes radio. Il peut être associé à un réseau de télécommunications pour réaliser des interconnexions à distance entre nœuds. 1896 : Guglielmo Marconi réalise les premières transmissions sans fil (télégraphie sans fil) après que Nikola Tesla a déposé les premiers brevets dans ce domaine. 1980 : invention d'Internet et des normes 802 de l'IEEE. La norme la plus utilisée actuellement pour les réseaux sans fil est la norme IEEE 802.
Convection–diffusion equationThe convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
OrdinateurUn ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Model aircraftA model aircraft is a small unmanned aircraft. Many are replicas of real aircraft. Model aircraft are divided into two basic groups: flying and non-flying. Non-flying models are also termed static, display, or shelf models. Aircraft manufacturers and researchers make wind tunnel models for testing aerodynamic properties, for basic research, or for the development of new designs. Sometimes only part of the aircraft is modelled.
Installation (informatique)En informatique, l'installation (en anglais, installation ou setup) d'un programme (incluant les pilotes de périphériques et les plugins) est la procédure permettant l'intégration du programme sur l'ordinateur pour le rendre apte à être exécuté. Parce que le processus d'installation varie pour chaque programme et chaque ordinateur, les programmes (y compris les systèmes d'exploitation) sont souvent livrés avec un installateur, un programme spécialisé responsable de faire tout ce qui est nécessaire pour l'installation.
Apollo Guidance ComputerL'Apollo Guidance Computer (AGC) est l'ordinateur embarqué de navigation et de pilotage installé dans les vaisseaux spatiaux des missions Apollo. Il a été conçu par la société MIT Instrumentation Laboratory sous la direction de Charles Stark Draper avec le matériel de conception dirigée par Eldon C. Hall. La fabrication de l'ordinateur était confiée à la société Sperry tandis que la programmation était réalisée au MIT. C'est le premier ordinateur à avoir recours aux circuits intégrés (CI).
Produit videEn mathématiques, le produit vide est le résultat d'une multiplication d'aucun nombre. Sa valeur numérique vaut par convention 1. Ce fait est utile en algèbre et dans l'étude des séries entières. Deux exemples fréquents sont a0 = 1 (tout nombre élevé à la puissance 0 donne 1) et 0! = 1 (factorielle de 0 vaut 1). Plus généralement, étant donné une opération de multiplication sur une certaine collection d'objets, le produit vide est le résultat d'une multiplication d'aucun objet de l'ensemble.
Lois de Fickvignette|250px|La diffusion moléculaire d'un point de vue microscopique et macroscopique. Les molécules solubles sur le côté gauche de la barrière (ligne violette) diffusent pour remplir le volume complet. En haut : une seule molécule se déplace aléatoirement. Au milieu : Le soluté remplit le volume disponible par marche aléatoire. En bas : au niveau macroscopique, le côté aléatoire devient indétectable. Le soluté se déplace des zones où les concentrations sont élevées vers les zones à concentrations plus faibles.