**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Implementation of FIR filters for fast multi-channel processing

Résumé

Digital signal processors are ubiquitous in electronics, with applications ranging from sound processing to software-defined radio. Finite impulse response (FIR) filters are among the components that are used for the processing; the implementation is tailored to the user’s needs, whether they specifically need performance or configurability. Handling numerous channels in a single filter block can be achieved in hardware by running multiple filters in parallels, with a high space expense and controller overhead. This project proposes and discusses an implementation template for a pipeline that simultaneously processes a desired number of channels, while keeping coefficients configurability. The implementation we propose is economic in terms of area while meeting the theoretical timing requirements to process long filters.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (11)

Processeur de signal numérique

Un DSP (de l'anglais « Digital Signal Processor », qu'on pourrait traduire par « processeur de signal numérique » ou « traitement numérique de signal ») est un microprocesseur optimisé pour exécuter

Traitement numérique du signal

Le traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analo

Filtre à réponse impulsionnelle finie

En traitement du signal, un filtre à réponse impulsionnelle finie ou filtre RIF (en anglais Finite Impulse Response filter ou FIR filter) est un filtre dont la réponse impulsionnelle est de durée fi

Publications associées (18)

Chargement

Chargement

Chargement

Gilles Baechler, Arnaud Latty, Michalina Wanda Pacholska, Adam James Scholefield, Martin Vetterli

Lippmann (or interferential) photography is the first and only analog photography method that can capture the full color spectrum of a scene in a single take. This technique, invented more than a hundred years ago, records the colors by creating interference patterns inside the photosensitive plate. Lippmann photography provides a great opportunity to demonstrate several fundamental concepts in signal processing. Conversely, a signal processing perspective enables us to shed new light on the technique. In our previous work (G. Baechler et al., 2021), we analyzed the spectra of historical Lippmann plates using our own mathematical model. In this paper, we provide the derivation of this model and validate it experimentally. We highlight new behaviors whose explanations were ignored by physicists to date. In particular, we show that the spectra generated by Lippmann plates are in fact distorted versions of the original spectra. We also show that these distortions are influenced by the thickness of the plate and the reflection coefficient of the reflective medium used in the capture of the photographs. We verify our model with extensive experiments on our own Lippmann photographs.

Binaural room impulse responses (BRIRs) characterize the transfer of sound from a source in a room to the left and right ear entrances of a listener. Applying BRIRs to sound source signals enables headphone listening with the perception of a three dimensional auditory image. BRIRs are usually linear filters of several hundred milliseconds to several seconds length. The waveforms of the BRIRs contain therefore a vast amount of information. This thesis studies the modeling of BRIRs with a reduced set of parameters. It is shown that late BRIR tails can be modeled perceptually accurately by considering only the time-frequency energy decay relief and frequency dependent interaural coherence (IC). This insight on BRIR modeling enables a number of algorithms with advantages over the previous state of the art. Three such algorithms are proposed: The first algorithm makes it possible to obtain BRIRs by measuring room properties and listener properties separately, vastly reducing the number of measurements necessary to measure listener-specific BRIRs for a number of listeners and rooms. The listener properties are measured as a head related transfer function (HRTF) set and the room properties are measured as a B-format1 room impulse response (RIR). It is shown how to combine the HRTF set of the listener with a B-format RIR to obtain BRIRs for that room individualized for the listener. This technique uses the insight on BRIR perception by computing the BRIR tail as a frequency dependent, linear combination of B-format channels, designed to obtain the desired energy decay relief and interaural coherence. A serious problem related to convolving sound source signals with BRIRs is the computational complexity of implementing long BRIRs as finite impulse response (FIR) filters. Inspired by the perceptual experiments on BRIR tails, a modified Jot reverberator is proposed, simulating BRIR tails with the desired frequency dependent interaural coherence, requiring significantly less computational power than direct application of BRIRs. Also inspired by the perception of BRIRs, an extension of this reverberator is proposed, modeling efficiently the reverberation tail with the correct coherence and also distinct early reflections using two parallel feedback delay networks. If stereo signals are played back using headphones, unnatural binaural cues are given to the listener, e.g. interaural level difference (ILD) changes not accompanied by corresponding interaural time difference (ITD) changes or diffuse sound with unnatural IC. In order to simulate stereo listening in a room and to avoid these unnatural cues, BRIRs can be applied to the left and right stereo channels. Besides the computational complexity associated with applying the BRIR filters, this technique has a number of disadvantages. The room associated with the used BRIRs is imposed on the stereo signal, which usually already contains reverberation and applying BRIRs leads to a change in reverberation time and to coloration. A technique is proposed in which the direct sound is rendered using data extracted from HRTFs and the ambient sound contained in the stereo signal is modified such that its coherence is matched to the coherence of a binaural recording of diffuse sound, without modifying its spectrum. Implementations of reverberators based on general feedback-delay networks (e.g. Jot reverberators) can require a high number of operations for implementing the so-called feedback matrix. For certain applications where the number of channels needs to be high, such as decorrelators, this can pose a real problem. Special types of matrices are known which can be implemented efficiently due to matrix elements having the same magnitude. However, the complexity can also be reduced by introducing many zero elements. Different types of such sparse feedback matrices are proposed and tested for their suitability in Jot reverberators. A highly efficient feedback matrix is obtained by combining both approaches, choosing the nonzero elements of a sparse matrix from efficiently implementable Hadamard matrices. ______________________________ 1 B-format refers to a 4-channel signal recorded with four coincident microphones: one omni and three dipole microphones pointing in orthogonal directions.

Sentiment analysis is the automated coding of emotions expressed in text. Sentiment analysis and other types of analyses focusing on the automatic coding of textual documents are increasingly popular in psychology and computer science. However, the potential of treating automatically coded text collected with regular sampling intervals as a signal is currently overlooked. We use the phrase "text as signal" to refer to the application of signal processing techniques to coded textual documents sampled with regularity. In order to illustrate the potential of treating text as signal, we introduce the reader to a variety of such techniques in a tutorial with two case studies in the realm of social media analysis. First, we apply finite response impulse filtering to emotion-coded tweets posted during the US Election Week of 2020 and discuss the visualization of the resulting variation in the filtered signal. We use changepoint detection to highlight the important changes in the emotional signals. Then we examine data interpolation, analysis of periodicity via the fast Fourier transform (FFT), and FFT filtering to personal value-coded tweets from November 2019 to October 2020 and link the variation in the filtered signal to some of the epoch-defining events occurring during this period. Finally, we use block bootstrapping to estimate the variability/uncertainty in the resulting filtered signals. After working through the tutorial, the readers will understand the basics of signal processing to analyze regularly sampled coded text.