SchistSchist ('ʃɪst ) is a medium-grained metamorphic rock showing pronounced schistosity. This means that the rock is composed of mineral grains easily seen with a low-power hand lens, oriented in such a way that the rock is easily split into thin flakes or plates. This texture reflects a high content of platy minerals, such as micas, talc, chlorite, or graphite. These are often interleaved with more granular minerals, such as feldspar or quartz.
Régularisation zêtaEn analyse fonctionnelle, la régularisation zêta est une méthode de régularisation des déterminants d'opérateurs qui apparaissent lors de calculs d'intégrales de chemins en théorie quantique des champs. Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui précisent complètement le problème.
Relativité doublement restreinteLa relativité doublement restreinte (appelée aussi parfois relativité restreinte déformée) ou DSR (de l'anglais doubly-special relativity ou deformed special relativity) est une théorie physique, s'apparentant par certains aspects à la relativité restreinte. Elle fut proposée à l'origine par Giovanni Amelino-Camelia, mais a été au moins implicite dans un article de Paul Merriam. Elle est fondée sur postulat que — en plus de la vitesse de la lumière — une échelle caractéristique fondée sur l'échelle de Planck doit rester invariante selon les transformations relativistes.
Course of Theoretical PhysicsThe Course of Theoretical Physics is a ten-volume series of books covering theoretical physics that was initiated by Lev Landau and written in collaboration with his student Evgeny Lifshitz starting in the late 1930s. It is said that Landau composed much of the series in his head while in an NKVD prison in 1938–1939. However, almost all of the actual writing of the early volumes was done by Lifshitz, giving rise to the witticism, "not a word of Landau and not a thought of Lifshitz".
Distribution (differential geometry)In differential geometry, a discipline within mathematics, a distribution on a manifold is an assignment of vector subspaces satisfying certain properties. In the most common situations, a distribution is asked to be a vector subbundle of the tangent bundle . Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, e.g.