Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al, Ga) N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al, Ga) N core-shell nanowires grown on Si and diamond substrates. While the (Al, Ga) N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al, Ga) N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al, Ga) N shell along the nanowire side facets compared to the (Al, Ga) N cap at the top facet. A nucleation study of the (Al, Ga) N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al, Ga) N shell nucleation model.
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Mukeshchand Thakur, Michal Daniel Macha, Yanfei Zhao, Hyungoo Ji
, ,