Using the optical-klystron effect to increase and measure the intrinsic beam energy spread in free-electron-laser facilities
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
There is a growing recognition that electronic band structure is a local property of materials and devices, and there is steep growth in capabilities to collect the relevant data. New photon sources, from small-laboratory-based lasers to free electron lase ...
Free-electron lasers and high-harmonic-generation table-top systems are new sources of extreme-ultraviolet to hard X-ray photons, providing ultrashort pulses that are intense, coherent and tunable. They are enabling a broad range of nonlinear optical and s ...
Materials properties are strictly dependent on their microstructure. The internal symmetries and the disposition of the constituting atoms of a material, which depend on its crystallographic structure, greatly affect its response to mechanical, electromagn ...
Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in t ...
Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse l ...
The two-color operation of free electron laser (FEL) facilities allows the delivery of two FEL pulses with different energies, which opens new possibilities for user experiments. Measuring the arrival time of both FEL pulses relative to the external experi ...
Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high tem ...
This manuscript summarizes the different technological developments and scientific activities in the field of ultrafast laser and electron physics which I have carried out as part of my PhD thesis. The topics addressed in my thesis range from the developme ...
The ultra-bright short-pulsed radiation provided by the free electron lasers (FEL) is used for many new discoveries in different fields of science and industry. The advancement of the FEL technologies allows the generation of shorter photon pulses with hig ...
The SwissFEL (Swiss Free Electron Laser) is a free electron laser which is being built at the Paul Scherrer Institute. The SwissFEL will be a user facility to study processes on unexplored scales of space and time. In order to achieve these aims, X-ray pul ...