Publication

Transfer learning application of self-supervised learning in ARPES

Gabriel Aeppli
2023
Article
Résumé

There is a growing recognition that electronic band structure is a local property of materials and devices, and there is steep growth in capabilities to collect the relevant data. New photon sources, from small-laboratory-based lasers to free electron lasers, together with focusing beam optics and advanced electron spectrometers, are beginning to enable angle-resolved photoemission spectroscopy (ARPES) in scanning mode with a spatial resolution of near to and below microns, two- to three orders of magnitude smaller than what has been typical for ARPES hitherto. The results are vast data sets inhabiting a five-dimensional subspace of the ten-dimensional space spanned by two scanning dimensions of real space, three of reciprocal space, three of spin-space, time, and energy. In this work, we demonstrate that recent developments in representational learning (self-supervised learning) combined with k-means clustering can help automate the labeling and spatial mapping of dispersion cuts, thus saving precious time relative to manual analysis, albeit with low performance. Finally, we introduce a few-shot learning (k-nearest neighbor) in representational space where we selectively choose one (k = 1) image reference for each known label and subsequently label the rest of the data with respect to the nearest reference image. This last approach demonstrates the strength of self-supervised learning to automate image analysis in ARPES in particular and can be generalized to any scientific image analysis.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.