Corps réel closEn mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
Corps totalement réelEn mathématiques et en théorie des nombres, un corps de nombres K est dit totalement réel si pour chaque plongement de K dans l'ensemble des nombres complexes, l' se trouve dans l'ensemble des nombres réels. De manière équivalente, K est engendré sur Q par une racine d'un polynôme à coefficients entiers dont toutes les racines sont réelles, ou bien encore le produit tensoriel K⊗R est un produit d'exemplaires de R. La notion de signature d'un corps de nombres permet de mesurer plus précisément à quel point un corps est loin d'être totalement réel.
Formally real fieldIn mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition.