Combined Multi-Plane Tomographic Phase Retrieval and Stochastic Optical Fluctuation Imaging for 4D Cell Microscopy
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Fluorescence microscopy techniques are well established research tools and have proven their use in a large variety of biomedical applications. Microscopic molecular contrast is achieved by imaging fluorescent dyes that bind specifically to a molecule of i ...
Life sciences have a constantly growing need for novel methodological approaches suitable to investigate the intracellular environment with increased temporal and spatial resolutions. Recently, optical near-field probes, such as laser-irradiated pointed me ...
Localization microscopy such as STORM/PALM achieves the super-resolution by sparsely activating photo-switchable probes. However, to make the activation sparse enough to obtain reconstruction images using conventional algorithms, only small set of probes n ...
Super resolution microscopy such as STORM and (F) PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow te ...
Novel fundamental research results provided new techniques going beyond the diffraction limit. These recent advances known as super-resolution microscopy have been awarded by the Nobel Prize as they promise new discoveries in biology and live sciences. All ...
We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluo ...
Microscopy imaging, including fluorescence microscopy and electron microscopy, has a prominent role in life science and medical research. During the past two decades, biological imaging has undergone a revolution by way of the development of new microscopy ...
Super-resolution fluorescence microscopy is a promising tool with the potential to strengthen our understanding of living processes. Based on the ability to switch fluorophores on and off in an either deterministic or stochastic manner, the fundamental lim ...
Microscopy imaging, including fluorescence microscopy and electron microscopy, has taken a prominent role in life science research and medicine due to its ability to investigate the 3D interior of live cells and organisms. A long-term research in bio-imagi ...
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-res ...