Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Human-centered scene understanding is the process of perceiving and analysing a dynamic scene observed through a network of sensors with emphasis on human-related activities. It includes the visual perception of human-related activities from either single ...
Image super-resolution reconstructs a higher-resolution image from the observed low-resolution image. In recent years, machine learning models have been widely employed and deep learning networks have achieved state-of-the-art super-resolution performance. ...
The cameras are invented by imitating the human visual system to capture the scene. The camera
technologies have been substantially advanced in recent years. 108 MP resolution with 100x hybrid
zoom has become standard features for smartphone flagships. In ...
Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the perfor ...
We address the detection, tracking, and relative localization of the agents of a drone swarm from a human perspective using a headset equipped with a single camera and an Inertial Measurement Unit (IMU). We train and deploy a deep neural network detector o ...
Image restoration reconstructs, as faithfully as possible, an original image from a potentially degraded version of it. Image degradations can be of various types, for instance haze, unwanted reflections, optical or spectral aberrations, or other physicall ...
Existing techniques to encode spatial invariance within deep convolutional neural networks (CNNs) apply the same warping field to all the feature channels. This does not account for the fact that the individual feature channels can represent different sema ...
Neuromorphic computing is a wide research field aimed to the realization of brain-inspired
hardware, apt to tackle computation of unstructured data more efficiently than currently done
with standard computational units. Oscillatory neural networks are know ...
Visual Question Answering (VQA) on remote sensing imagery can help non-expert users in extracting information from Earth observation data. Current approaches follow a neural encoder-decoder design, combining convolutional and recurrent encoders together wi ...
Despite the successes of deep neural networks on many challenging vision tasks, they often fail to generalize to new test domains that are not distributed identically to the training data. The domain adaptation becomes more challenging for cross-modality m ...