Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response.
Didier Trono, Evaristo Jose Planet Letschert, Nikolaos Lykoskoufis
Didier Trono, Priscilla Turelli, Sandra Eloise Kjeldsen, Evaristo Jose Planet Letschert, Filipe Amândio Brandão Sanches Vong Martins, Florian Huber, Cyril David Son-Tuyên Pulver, Olga Marie Louise Rosspopoff, Romain Forey, Joana Carlevaro Fita
Wouter Richard Karthaus, Jillian Rose Love