Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Central Pattern Generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of ...
A mobile microrobot is defined as a robot with a size ranging from 1 in3 down to 100 µm3 and a motion range of at least several times the robot's length. Mobile microrobots have a great potential for a wide range of mid-term and long-term applications such ...
This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is ...
Flying has an advantage when compared to ground based locomotion, as it simplifies the task of overcoming obstacles and allows for rapid coverage of an area while also providing a birds-eye-view of the environment. One of the key challenges that has preven ...
The problem of controlling locomotion is an area in which neuroscience and robotics can fruitfully interact. In this article, I will review research carried out on locomotor central pattern generators (CPGs), i.e. neural circuits capable of producing coord ...
Autonomous flight in confined or cluttered environments such as houses or urban canyons requires high manoeuvrability, fast mapping from sensors to actuators and very limited overall system weight. Although flying animals are well capable of coping with su ...
This article presents a control architecture for controlling the locomotion of an amphibious snake/lamprey robot capable of swimming and serpentine locomotion. The control architecture is based on a central pattern generator (CPG) model inspired from the n ...
Autonomous flight in confined or cluttered environments such as houses or urban canyons requires high manoeuvrability, fast mapping from sensors to actuators and very limited overall system weight. Although flying animals are well capable of solving this p ...
In this thesis, we present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework using nonlinear dynamical systems and is inspired by theories of self-organization. Nonlinear ...
This thesis presents the design and realization of two generations of robot elements that can be assembled together to construct amphibious mobile robots. These elements, designed to be individually waterproof and having their own battery, motor controller ...