Accuracy of GW for calculating defect energy levels in solids
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
III-V semiconductor nanowires are, due to their unique properties, one of the most promising nanostructures developed in the last decades. However, the realization of commercial devices made of III-V nanowires, such as transistors and solar cells, has not ...
We present a procedure for addressing extrinsic defects in amorphous oxides, in which the most stable defect configurations are identified through ab initio molecular dynamics in various charge states and studied through hybrid functional calculations. The ...
In this topical review, we discuss recent progress in electronic-structure methods for calculating defect energy levels in semiconductors and insulators. We concentrate mainly on two advanced electronic-structure schemes, namely hybrid density functional t ...
Formation energies of C, Si, and Ge defects in beta-Ga2O3 are studied through hybrid functional calculations. The interstitial defects of these elements generally occur at higher energies than their substitutional counterparts, but are more stable at low F ...
Crystallographic point defects (PDs) can dramatically decrease the efficiency of optoelectronic semiconductor devices, many of which are based on quantum well (QW) heterostructures. However, spatially resolving individual nonradiative PDs buried in such QW ...
AMER CHEMICAL SOC2021
,
We show that constant-Fermi-level ab initio molecular dynamics can be used as a computer-based tool to reveal and control relevant defects in semiconductor materials. In this scheme, the Fermi level can be set at any position within the band gap during the ...
Amer Physical Soc2017
The thesis describes the computational study of structural, electonic and transport properties of monolayer transition metal dichalcogenides (TMDs) in the stable 2H and the metastable 1T' phases. Several aspects have been covered by the study including the ...
EPFL2017
We conduct a detailed investigation of defects in two representative amorphous oxides: amorphous Al2O3 (am-Al2O3) and TiO2 (am-TiO2), by combining ab initio molecular dynamics (MD) simulations and hybrid functional calculations. Our results indicate that o ...
EPFL2019
,
Using hybrid density functional calculations, we address the structural properties, formation energies, and charge transition levels of a variety of oxygen defects in GaAs. The set of considered defects comprises the bridging O atom in a As-O-Ga configurat ...
Amer Physical Soc2016
, ,
Using density functional calculations, we study a set of candidate defects for Fermi-level pinning at GaAs/oxide interfaces. The set of considered defects comprises both bulklike and interfacial defects, including As antisites, Ga and As dangling bonds, th ...