Publication

On chirality of toroidal embeddings of polyhedral graphs

Résumé

We investigate properties of spatial graphs on the standard torus. It is known that nontrivial embeddings of planar graphs in the torus contain a nontrivial knot or a non-split link due to [2, 3]. Building on this and using the chirality of torus knots and links [9, 10], we prove that the nontrivial embeddings of simple 3-connected planar graphs in the standard torus are chiral. For the case that the spatial graph contains a nontrivial knot, the statement was shown by Castle et al. [5]. We give an alternative proof using minors instead of the Euler characteristic. To prove the case in which the graph embedding contains a nonsplit link, we show the chirality of Hopf ladders with at least three rungs, thus generalizing a theorem of Simon [12].

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.