IsospinEn physique nucléaire et en physique des particules, l'isospin (I) est un nombre quantique dans le domaine de l’interaction forte. Plus précisément, la symétrie d'isospin est un sous-ensemble de la symétrie de saveur vue plus largement dans les interactions des baryons et des mésons. Le nom de ce concept contient le terme spin parce que sa description quantique est mathématiquement similaire au moment cinétique (en particulier dans la manière dont il est couplé, par exemple, une paire de proton-neutron peut être couplée soit dans un état d'isospin 1 ou 0).
DipoleIn physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system is a pair of charges of equal magnitude but opposite sign separated by some typically small distance. (A permanent electric dipole is called an electret.) A magnetic dipole is the closed circulation of an electric current system. A simple example is a single loop of wire with constant current through it.
Marécage (physique)En physique, le terme marécage () fait référence à des théories physiques efficaces à basse énergie qui ne sont pas compatibles avec la théorie des cordes, contrairement au « » des théories compatibles avec elle. En d'autres termes, le marécage est l'ensemble des théories d'apparence cohérente sans cohérente dans la théorie des cordes. Les développements de la théorie des cordes suggèrent que le paysage de la théorie des cordes des faux vides est vaste.
Locally finite collectionA collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Point-finite collectionIn mathematics, a collection or family of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of A metacompact space is a topological space in which every open cover admits a point-finite open refinement. Every locally finite collection of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a paracompact space. Every paracompact space is therefore metacompact.