Symplectic Dynamical Low Rank approximation of wave equations with random parameters
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we model a spatially varying channel where a source is moving along a random trajectory with respect to a fixed re- ceiver. The aim is to compute the power spectral density corre- sponding to the channel impulse response as a function of tem ...
This book investigates convex multistage stochastic programs whose objective and constraint functions exhibit a generalized nonconvex dependence on the random parameters. Although the classical Jensen and Edmundson-Madansky type bounds or their extensions ...
This paper presents an application of the general sample-to-object approach to the problem of invariant image classification. The approach results in defining new SVM kernels based on tangent vectors that take into account prior information on known invari ...
A Hamiltonian formulation of the relativistic guiding center drifts is extended to anisotropic pressure plasmas. The magnetic coordinates devised by Boozer are adapted to the anisotropic pressure model and retain canonical properties for two-dimensional an ...
For chaotic systems there is a theory for the decay of the survival probability, and for the parametric dependence of the local density of states. This theory leads to the distinction between 'perturbative' and 'non-perturbative' regimes, and to the observ ...
This paper presents an application of the general sample-to-object approach to the problem of invariant image classification. The approach results in defining new SVM kernels based on tangent vectors that take into account prior information on known invari ...