Symplectic Dynamical Low Rank approximation of wave equations with random parameters
Publications associées (56)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis we describe a path integral formalism to evaluate approximations to the probability density function for the location and orientation of one end of a continuum polymer chain at thermodynamic equilibrium with a heat bath. We concentrate on th ...
Every action on a Poisson manifold by Poisson diffeomorphisms lifts to a Hamiltonian action on its symplectic groupoid which has a canonically defined momentum map. We study various properties of this momentum map as well as its use in reduction. ...
In this paper a detailed mathematical procedure is described to evaluate modal scattering parameters conventionally defined in planar multilayered structures excited by wave ports. Combined Field Integral Equation technique is implemented and solved using ...
The problem treated here is to find the Hamiltonian structure for an ideal gauge-charged fluid. Using a Kaluza-Klein point of view, we obtain the non-canonical Poisson bracket and the motion equations by a Poisson reduction involving the automorphism group ...
American Mathematical Society, P.O. Box 6248 Ms. Phoebe Murdock, Providence, Ri 02940 Usa2008
In the first part of these notes, we deal with first order Hamiltonian systems in the form Ju'(t) = del H(u(t)) where the phase space X may be in infinite dimensional so as to accommodate some partial differential equations. The Hamiltonian H is an element ...
The Lagrangian and Hamiltonian structures for an ideal gauge-charged fluid are determined. Using a Kaluza-Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bun ...
The main topic of this thesis is the study of the non-linear stochastic wave equation in spatial dimension greater than 3 driven by spatially homogeneous Gaussian noise that is white in time. We are interested in questions of existence and uniqueness of so ...
This paper develops the theory of affine Lie-Poisson reduction and applies this process to Yang-Mills and Hall magnetohydrodynamics for fluids and superfluids. As a consequence of this approach, the associated Poisson brackets are obtained by reduction of ...
The Poisson induction and coinduction procedures are used to construct Banach Lie-Poisson spaces as well as related systems of integrals in involution. This general method applied to the Banach Lie-Poisson space of trace class operators leads to infinite H ...
Very large mol. systems can be calcd. with the so called CNDOL approx. Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term na ...