Publication

Malfunction diagnosis of thermal power plants based on advanced exergy analysis: The case with multiple malfunctions occurring simultaneously

Ligang Wang
2017
Article
Résumé

During continuous operation of energy systems, the performance of components will mostly, gradually deviate away from the reference conditions due to performance degradation, which may eventually lead to malfunctions or operation failure. The complex interconnection among components and the propagation nature of additional irreversibility caused by malfunctions increase the difficulty of malfunction diagnosis. Particularly, in common real-world cases, multiple malfunctions usually happen simultaneously in several different components, imposing additional difficulty for effective malfunction identification and quantification. In this paper, we generalize an effective diagnosis method recently proposed by the authors to accurately locate the malfunction component and quantify the effect caused by anomalies of multiple malfunctions. The generalized method is based on advanced exergy analysis, where exergy destruction within each component is split into endogenous and exogenous parts. The endogenous exergy destruction is due to the irreversibility of the component itself, while the exogenous is caused by the inefficiencies of the remaining components. The exogenous exergy destruction is, in fact, the major obstacle to accurately pinpoint the origins of performance degradation. In the generalized approach, an internal exergy indicator is recommended to be applied first to identify the malfunction components in a fast and effective manner. Then the endogenous exergy destruction of the identified malfunction components under the reference and degradation conditions is calculated and compared for accurate quantification. The generalized diagnosis approach is applied to a complex real-world case studies, in which several malfunctions are introduced simultaneously into different components. The results show that the proposed indicator could fast identify the source of anomalies while the endogenous exergy destruction successfully and effectively quantifies all introduced malfunctions. (c) 2017 Elsevier Ltd. All rights reserved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.