Regroupement hiérarchiqueDans le domaine de l'analyse et de la classification automatique de données, le regroupement hiérarchique est un partitionnement de données ou clustering, au moyen de diverses méthodes, dites « ascendantes » et « descendantes ». Les méthodes dites « descendantes » partent d’une solution générale vers une autre plus spécifique. Les méthodes de cette catégorie démarrent avec une seule classe contenant la totalité puis se divisent à chaque étape selon un critère jusqu’à l’obtention d’un ensemble de classes différentes.
Graph operationsIn the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations create a new graph from a single initial graph. Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc.
Graphe distance-régulierEn théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de . De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et . Formellement, tels que et où est l’ensemble des sommets à distance de , et .
Produit tensoriel (graphe)Le produit tensoriel est une opération sur deux graphes et résultant en un graphe . Il est également appelé produit direct, produit de Kronecker ou produit catégorique. Soient deux graphes et . Le produit tensoriel est défini comme suit : l'ensemble de ses sommets est le produit cartésien ; et sont adjacents dans si et seulement si et sont adjacents dans et et sont adjacents dans . Autrement dit, deux sommets sont voisins si les sommets dont ils sont issus étaient voisins dans les deux graphes.
Graphe sans triangleEn théorie des graphes, un graphe sans triangle est un graphe qui ne possède pas de triplet d'arêtes formant un triangle. Le théorème de Mantel, cas particulier du théorème de Turán, est : La famille des graphes sans triangle, contient notamment les graphes acycliques et est contenue dans les graphes sans diamant. Les graphes sans triangle peuvent être reconnus en temps , où est le nombre d'arêtes. De façon plus générale, on peut reconnaître les graphes n'ayant pas de cycles d'une certaine longueur (fixé dans l'algorithme), en temps (avec le nombre de sommets) ou en temps .