Keyword-based Image Color Re-rendering with Semantic Segmentation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
This paper introduces TACOSS a text-image alignment approach that allows explainable land cover semantic segmentation by directly integrating semantic concepts encoded from texts. TACOSS combines convolutional neural networks for visual feature extraction ...
The Institute of Electrical and Electronics Engineers, Inc2023
Dataset and models used and produced in the work described in the paper "Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers": https://infoscience.epfl.ch/record/282863?ln=en ...
A novel method is proposed in the scope of image segmentation that solves this problem by breaking it into two main blocks. The first block's functionality is a method to anticipate the color basis of each segment in segmented images. One of the challenges ...
Semantic segmentation algorithms that can robustly segment objects across multiple camera viewpoints are crucial for assuring navigation and safety in emerging applications such as autonomous driving. Existing algorithms treat each image in isolation, but ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Enabling autonomous driving (AD) can be considered one of the biggest challenges in today?s technology. AD is a complex task accomplished by several functionalities, with environment perception being one of its core functions. Environment perception is usu ...
Semantic segmentation for remote sensing images (RSI) is critical for the Earth monitoring system. However, the covariate shift between RSI datasets under different capture conditions cannot be alleviated by directly using the unsupervised domain adaptatio ...
Salient object detection is evaluated using binary ground truth (GT) with the labels being salient object class and background. In this study, the authors corroborate based on three subjective experiments on a novel image dataset that objects in natural im ...
Mass digitization and the opening of digital libraries gave access to a huge amount of historical newspapers. In order to bring structure into these documents, current techniques generally proceed in two distinct steps. First, they segment the digitized im ...