Capture-Point Based Balance and Reactive Omnidirectional Walking Controller
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Bipedal locomotion is a challenging task in the sense that it requires to maintain dynamic balance while steering the gait in potentially complex environments. Yet, humans usually manage to move without any apparent difficulty, even on rough terrains. This ...
Compliance of the body has a crucial role on locomotion performance. The levels and the distribution of compliance should be well tuned to obtain efficient gait. The leg stiffness changes significantly even during different phases of a single gait cycle. T ...
Legged machines have the potential to traverse terrain that wheeled robots cannot. These capabilities are useful in scenarios such as stairs in homes or debris-filled disaster scenes, such as earthquake areas. This thesis develops one of the algorithms nec ...
Abstract: We present an algorithm that generates walking motions for quadruped robots without the use of an explicit footstep planner by simultaneously optimizing over both the Center of Mass (CoM) trajectory and the footholds. Feasibility is achieved by i ...
This work investigates the usage of compliant universal grippers as a novel foot design for legged locomotion. The method of jamming of granular media in the universal grippers is characterized by having two distinct states: a soft, fluid-like state which ...
This letter combines the fast zero-moment-point approaches that work well in practice with the broader range of capabilities of a trajectory optimization formulation, by optimizing over body motion, footholds, and center of pressure simultaneously. We intr ...
We present a trajectory optimization framework for legged locomotion on rough terrain. We jointly optimize the center of mass motion and the foothold locations, while considering terrain conditions. We use a terrain costmap to quantify the desirability of ...
In this paper, we present a new mechanical model for biped locomotion, composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to a double support phase, this model has dif ...
In this article, we present a new linear model (3LP) for bipedal locomotion which can describe swing and torso dynamics as well as falling. Compared to traditional inverted-pendulum based models, 3LP produces more human-like center of mass trajectory and s ...